Feature Tracking and Motion Compensation for Action Recognition

نویسندگان

  • Hirofumi Uemura
  • Seiji Ishikawa
  • Krystian Mikolajczyk
چکیده

This paper discusses an approach to human action recognition via local feature tracking and robust estimation of background motion. The main contribution is a robust feature extraction algorithm based on KLT tracker and SIFT as well as a method for estimating dominant planes in the scene. Multiple interest point detectors are used to provide large number of features for every frame. The motion vectors for the features are estimated using optical flow and SIFT based matching. The features are combined with image segmentation to estimate dominant homographies, and then separated into static and moving ones regardless the camera motion. The action recognition approach can handle camera motion, zoom, human appearance variations, background clutter and occlusion. The motion compensation shows very good accuracy on a number of test sequences. The recognition system is extensively compared to state-of-the art action recognition methods and the results are improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Motion and Feature Attention Model Based Tracking for Moving Robots

Primates’ visual system can implement various vision tasks effectively and efficiently by focusing the limited attention resources to relevant information. Motivated by this mechanism, we propose a motion and feature attention model based algorithm in this paper for tracking from moving robot. At first regions of motion attention are obtained by ego-motion compensation and frame difference imag...

متن کامل

Robot Motion Vision Pait I: Theory

A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...

متن کامل

Video Stabilization, Camera Motion Pattern Recognition and Motion Tracking Using Spatiotemporal Regularity Flow

In this paper we propose a different approach based on a spatio-temporal feature called the Spatio Temporal Regularity Flow (SPREF) to stabilize unwanted camera motions in a video, recognize the camera motion patterns between consecutive frames and Group of Frames(GOF) and track the motion of an object in a video with the background subtracted. The method for stabilization based on Camera Motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008